English

∫ √ 1 − Sin 2 X 1 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
Sum

Solution

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}}dx\]

\[ = \int\sqrt{\frac{\cos^2 x + \sin^2 x - 2 \sin x \cos x}{\cos^2 x + \sin^2 x + 2 \sin x \cos x}} dx\]

\[ = \sqrt{\frac{\left( \cos x - \sin x \right)^2}{\left( \cos x + \sin x \right)^2}}dx\]

\[ = \int\frac{\cos x - \sin x}{\cos x + \sin x}dx\]

\[ = \int\frac{1 - \tan x}{1 + \tan x}dx\]

\[ = \int\tan \left( \frac{\pi}{4} - x \right)dx\]

\[ = \frac{1}{- 1}\text{ln}\left| \sec \left( \frac{\pi}{4} - x \right) \right| \left[ \because \int\tan \left( ax + b \right)dx = \frac{1}{a}\text{ln }\left| \sec \left( ax + b \right) \right| + C \right]\]

\[ = \frac{- \text{In} \left| \text{cos} \left( \frac{\pi}{4} - x \right) \right|}{- 1} + C\]

\[ = \text{ln }\left| \text{cos} \left( \frac{\pi}{4} - x \right) \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 11 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int2 x^3 e^{x^2} dx\]

 
` ∫  x tan ^2 x dx 

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×