Advertisements
Advertisements
Question
Solution
` ∫ { sin (2 x ) dx }/{\sqrt{ sin^4 x + 4 sin^2 x-2}} `
`\text{ let }\sin^2 x = t `
` ⇒ 2 sin x cos x dx = dt`
\[ \Rightarrow \text{ sin }\left( 2 x \right) dx = dt\]
Now, ` ∫ { sin (2 x ) dx }/{\sqrt{ sin^4 x + 4 sin^2 x-2}} `
\[ = \int\frac{dt}{\sqrt{t^2 + 4t - 2}}\]
\[ = \int\frac{dt}{\sqrt{t^2 + 4t + 4 - 4 - 2}}\]
\[ = \int\frac{dt}{\sqrt{\left( t + 2 \right)^2 - \left( \sqrt{6} \right)^2}}\]
\[ = \text{ log }\left| t + 2 + \sqrt{\left( t + 2 \right)^2 - 6} \right| + C\]
\[ = \text{ log }\left| t + 2 + \sqrt{t^2 + 4t - 2} \right| + C\]
` = \text{ log } |sin^2 x + 2 + \sqrt{\sin^4 x + 4 \sin^2 x - 2} | + C`
APPEARS IN
RELATED QUESTIONS
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Find: `int (3x +5)/(x^2+3x-18)dx.`