Advertisements
Advertisements
Question
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
Sum
Solution
\[\int\left( \frac{1 - x^4}{1 - x} \right)dx\]
\[ = \int\frac{\left( 1 - x^2 \right) \left( 1 + x^2 \right)}{\left( 1 - x \right)}dx\]
\[ = \int\frac{\left( 1 - x \right) \left( 1 + x \right) \left( 1 + x^2 \right)}{\left( 1 - x \right)}dx\]
\[ = \int\left( 1 + x \right) \left( 1 + x^2 \right)dx\]
\[ = \int\left( 1 + x^2 + x + x^3 \right)dx\]
\[ = x + \frac{x^3}{3} + \frac{x^2}{2} + \frac{x^4}{4} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int \sin^2\text{ b x dx}\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]