English

∫ X 2 + 5 X + 2 X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]

Sum

Solution

\[\int\frac{\left( x^2 + 5x + 2 \right)}{\left( x + 2 \right)}dx\]
`=  ∫ x^2 / {x+2}  dx  + 5 ∫   {x   dx} / {x+2 } + 2 ∫  dx/{ x+2}`
\[ = \int\left( \frac{x^2 - 4 + 4}{x + 2} \right)dx + 5\int\left( \frac{x + 2 - 2}{x + 2} \right)dx + 2\int\frac{dx}{x + 2}\]
\[ = \int\frac{\left( x - 2 \right)\left( x + 2 \right)}{\left( x + 2 \right)}dx + \int\frac{4}{x + 2}dx + 5\int\left( 1 - \frac{2}{x + 2} \right)dx + 2\int\frac{dx}{x + 2}\]
\[ = \int\left( x - 2 \right) dx + 4\int\frac{dx}{x + 2} + 5\  ∫ dx - 10\int\frac{dx}{x + 2} + 2\int\frac{dx}{x + 2}\]
\[ = \int\left( x - 2 \right)dx - 4\int\frac{dx}{x + 2} + 5\  ∫  dx\]
\[ = \left( \frac{x^2}{2} - 2x \right) -\text{ 4  ln }\left| x + 2 \right| + 5x + C\]
\[ = \frac{x^2}{2} + 3x - \text{4  ln} \left| x + 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.04 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.04 | Q 1 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


`  ∫  sin 4x cos  7x  dx  `

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×