English

∫ 1 X ( X − 2 ) ( X − 4 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
Sum

Solution

\[\int\frac{1}{x\left( x - 2 \right)\left( x - 4 \right)}dx\]

\[\text{Let }\frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x - 4}\]

\[ \Rightarrow \frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{A\left( x - 2 \right)\left( x - 4 \right) + B\left( x \right)\left( x - 4 \right) + Cx \cdot \left( x - 2 \right)}{x\left( x - 2 \right)\left( x - 4 \right)}\]

\[ \Rightarrow 1 = A\left( x - 2 \right)\left( x - 4 \right) + B\left( x \right) \cdot \left( x - 4 \right) + Cx . \left( x - 2 \right) ...........(1)\]

\[\text{Putting }x = 0\text{ in eq. (1)}\]

\[ \Rightarrow 1 = A\left( 0 - 2 \right)\left( 0 - 4 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow \frac{1}{8} = A\]

\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (1)}\]

\[ \Rightarrow 1 = A \times 0 + B\left( 2 \right)\left( 2 - 4 \right) + C \times 2 \times 0\]

\[ \Rightarrow B = - \frac{1}{4}\]

\[\text{Putting }\left( x - 4 \right) = 0\text{ or }x = 4\text{ in eq (1)}\]

\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \cdot 4\left( 4 - 2 \right)\]

\[ \Rightarrow C = \frac{1}{8}\]

\[ \therefore \frac{1}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{1}{8x} - \frac{1}{4\left( x - 2 \right)} + \frac{1}{8\left( x - 4 \right)}\]

\[ \Rightarrow \int\frac{dx}{x\left( x - 2 \right)\left( x - 4 \right)} = \frac{1}{8}\int\frac{1}{x}dx - \frac{1}{4}\int\frac{1}{x - 2}dx + \frac{1}{8}\int\frac{1}{x - 4}dx\]

\[ = \frac{1}{8} \ln \left| x \right| - \frac{1}{4} \ln \left| x - 2 \right| + \frac{1}{8} \ln \left| x - 4 \right| + C\]

\[ = \frac{1}{8}\left( \ln \left| x \right| + \ln \left| x - 4 \right| - 2 \ln \left| x - 2 \right| \right) + C\]

\[ = \frac{1}{8}\left[ \ln \left| \frac{x\left( x - 4 \right)}{\left( x - 2 \right)^2} \right| \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 2 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×