Advertisements
Advertisements
Question
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
Sum
Solution
\[\text{ Let I } = \int e^x \sec x\left( 1 + \tan x \right)dx\]
\[ = \int e^x \left( \sec x + \sec x \tan x \right)dx\]
\[\text{ Here, }f(x) = \text{ sec x Put e}^x f(x) = t\]
\[ \Rightarrow f'(x) = \sec x \tan x\]
\[\text{ let e}^x \sec x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \sec x + e^x \sec x \tan x = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left( \sec x + \tan x \right)dx = dt\]
\[ \therefore \int e^x \left( \sec x + \sec x \tan x \right)dx = \int dt\]
\[ = t + C\]
\[ = e^x \sec x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
` ∫ tan x sec^4 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .