English

∫ E X 1 + X ( 2 + X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int e^x \left[ \frac{1 + x}{\left( 2 + x \right)^2} \right]dx\]

\[ = \int e^x \left( \frac{2 + x - 1}{\left( 2 + x \right)^2} \right)dx\]

\[ = \int e^x \left[ \frac{1}{\left( 2 + x \right)} - \frac{1}{\left( 2 + x \right)^2} \right]dx\]

\[\text{ Here, } f(x) = \frac{1}{2 + x}\]

\[ \Rightarrow f'(x) = \frac{- 1}{\left( 2 + x \right)^2}\]

\[\text{ Put e }^x f(x) = t\]

\[ \Rightarrow e^x \frac{1}{x + 2} = t\]

\[\text{ Diff  both  sides  w . r . t x}\]

\[ e^x \frac{1}{x + 2} + e^x \frac{- 1}{\left( x + 2 \right)^2} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{x + 2} - \frac{1}{\left( x + 2 \right)^2} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{\left( 2 + x \right)} - \frac{1}{\left( 2 + x \right)^2} \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = \frac{e^x}{2 + x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 13 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×