Advertisements
Advertisements
Question
\[\int \cos^2 \frac{x}{2} dx\]
Sum
Solution
\[\int \cos^2 \frac{x}{2} dx\]
\[ = \int\left( \frac{1 + \cos x}{2} \right)dx \left[ \therefore \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 + \cos x \right)dx\]
\[ = \frac{1}{2}\left[ x + \sin x \right] + C\]
\[ = \int\left( \frac{1 + \cos x}{2} \right)dx \left[ \therefore \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 + \cos x \right)dx\]
\[ = \frac{1}{2}\left[ x + \sin x \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`