Advertisements
Advertisements
Question
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
Sum
Solution
\[\text{Let I} = \int\frac{1 - \sin x}{x + \cos x}dx\]
\[\text{Putting x} + \cos x = t\]
\[ \Rightarrow 1 - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 - \sin x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln t} + C\]
\[ = \text{ln }\left| x + \cos x \right| + C \left[ \because t = x + \cos x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \sin^2 \frac{x}{2} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int \sec^6 x\ dx\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int\frac{\log x}{x^3} \text{ dx }\]