English

∫ Sin − 1 √ X a + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\text{ Putting x }= a \tan^2 \theta\]

\[ \Rightarrow \sqrt{\frac{x}{a}} = \tan \theta\]

\[ \Rightarrow dx = a\left( 2 \tan \theta \right) \sec^2 \text{ θ   dθ  }\]

\[ \therefore I = \int \sin^{- 1} \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \left( 2a \tan \theta \right) \sec^2 \text{ θ   dθ  }\]

\[ = \int \sin^{- 1} \sqrt{\frac{\tan^2 \theta}{\sec^2 \theta}} \left( 2a \tan \theta \sec^2 \theta \right) d\theta\]

\[ = 2a \int \left[ \sin^{- 1} \left( \sin \theta \right)\tan \theta \sec^2 \theta \right] d\theta\]

\[= 2a \int \theta_I \tan \theta_{II} \sec^2 \text{ θ   dθ  }\]

\[ = 2a \left[ \theta\frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \theta}{2}d\theta \right]\]

\[ = 2a \left[ \frac{\theta . \tan^2 \theta}{2} - \frac{1}{2}\int\left( se c^2 \theta - 1 \right)d\theta \right]\]

\[ = \text{ a }\theta \tan^2 \theta - a \tan \theta + a\theta + C\]

\[ = a\left( \frac{x}{a} \right) \tan^{- 1} \left( \frac{\sqrt{x}}{\sqrt{a}} \right) - a\sqrt{\frac{x}{a}} + a \tan^{- 1} \sqrt{\frac{x}{a}} + C\]

\[ = x \tan^{- 1} \sqrt{\frac{x}{a}} - \sqrt{ax} + a \tan^{- 1} \sqrt{\frac{x}{a}} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 58 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\  ∫    x   \text{ e}^{x^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫  sec^6   x  tan    x   dx `

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×