Advertisements
Advertisements
Question
\[\int x \sin^5 x^2 \cos x^2 dx\]
Sum
Solution
\[\text{ Let I} = \int x \cdot \sin^5 x^2 \cdot \cos x^2 \text{ dx }\]
\[\text{ Putting sin x}^2 = t\]
\[ \Rightarrow \text{ cos} \left( x^2 \right) \times 2x \text{ dx } = dt\]
\[ \Rightarrow \text{ cos} \left( x^2 \right) \cdot x \text{ dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int t^5 \cdot dt\]
\[ = \frac{1}{2} \left[ \frac{t^6}{6} \right] + C\]
\[ = \frac{t^6}{12} + C\]
\[ = \frac{\sin^6 x^2}{12} + C .....\left[ \because t = \sin x^2 \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int \cos^2 \text{nx dx}\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]