English

∫ 1 X ( 3 + Log X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x (3 + \log x)} dx\]
Sum

Solution

` Here, we  are" considering "log  x  as    log_e x . `
\[\text{Let I} = \int\frac{1}{x\left( 3 + \log x \right)}dx\]
\[\text{Putting }\log x = t\]
\[ \Rightarrow \frac{1}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{x} = dt\]
\[ \therefore I = \int\frac{dt}{3 + t}\]
\[ = \text{log }\left| 3 + t \right| + C\]
\[ = \text{log }\left| 3 + \text{log x }\right| + C \left[ \because t = \text{log x} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 16 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×