Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{1 + \cos 4x}{\cot x - \tan x} \right) dx\]
\[ = \int\frac{\left( 1 + \cos 4x \right)}{\left( \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} \right)} dx\]
\[ = \int\frac{2 \cos^2 2x \times \sin x \cos x}{\left( \cos^2 x - \sin^2 x \right)}dx\]
\[ = \int\frac{\cos^2 2x \times 2 \sin x \cos x}{\cos 2x}dx\]
\[ = \int\cos 2x \sin 2xdx\]
\[ = \frac{1}{2}\int2 \sin 2x \cos 2xdx\]
\[ = \frac{1}{2}\int\sin 4xdx\]
\[ = \frac{1}{2}\left[ - \frac{\cos 4x}{4} \right] + C\]
\[ = - \frac{1}{8}\cos 4x + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]