English

∫ 1 + Cos 4 X Cot X − Tan X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
Sum

Solution

\[\int\left( \frac{1 + \cos 4x}{\cot x - \tan x} \right) dx\]

\[ = \int\frac{\left( 1 + \cos 4x \right)}{\left( \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} \right)} dx\]

\[ = \int\frac{2 \cos^2 2x \times \sin x \cos x}{\left( \cos^2 x - \sin^2 x \right)}dx\]

\[ = \int\frac{\cos^2 2x \times 2 \sin x \cos x}{\cos 2x}dx\]

\[ = \int\cos 2x  \sin 2xdx\]

\[ = \frac{1}{2}\int2 \sin 2x \cos  2xdx\]

\[ = \frac{1}{2}\int\sin 4xdx\]

\[ = \frac{1}{2}\left[ - \frac{\cos 4x}{4} \right] + C\]

\[ = - \frac{1}{8}\cos 4x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.03 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.03 | Q 16 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \cos^5 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×