Advertisements
Advertisements
Question
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
Sum
Solution
\[\text{ Let I } = \int e^{2x} \left( - \sin x + 2\cos x \right)dx\]
\[\text{ Put e}^{2x} \cos x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[\left[ 2 e^{2x} \cos x + e^{2x} \times \left( - \sin x \right) \right]dx = dt\]
` ∴ \text{ I } = \int dt `
\[ = t + C\]
\[ = e^{2x} \cos x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int x^3 \cos x^4 dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \cos^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
` ∫ x tan ^2 x dx
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]