English

∫ E 2 X ( − Sin X + 2 Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
Sum

Solution

\[\text{ Let I } = \int e^{2x} \left( - \sin x + 2\cos x \right)dx\]

\[\text{ Put  e}^{2x} \cos x = t\]

\[\text{ Diff  both  sides  w . r . t x }\]

\[\left[ 2 e^{2x} \cos x + e^{2x} \times \left( - \sin x \right) \right]dx = dt\]

`  ∴   \text{ I } = \int   dt `

\[ = t + C\]

\[ = e^{2x} \cos x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 19 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int x^3 \cos x^4 dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \cos^5 x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×