English

∫ X 3 ( 1 + X 2 ) 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
Sum

Solution

\[\text{ Let  I } = \int\frac{x^3}{\left( 1 + x^2 \right)^2}\text{ dx }\]
\[ = \int\frac{x^2 \times x}{\left( 1 + x^2 \right)^2}\text{ dx }\]
\[\text{  Putting 1 + x}^2 = t \]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow 2x\text{ dx } = dt\]
\[ \Rightarrow \text{  x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{\left( t - 1 \right)}{t^2}dt\]
\[ = \frac{1}{2}\int\left( \frac{1}{t} - \frac{1}{t^2} \right)\text{ dt }\]
\[ = \frac{1}{2}\int\frac{dt}{t} - \frac{1}{2}\int t^{- 2} \text{ dt }\]
\[ = \frac{1}{2} \text{ ln} \left| t \right| - \frac{1}{2}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{2} \text{ ln } \left| t \right| + \frac{1}{2t} + C\]
\[ = \frac{1}{2} \text{  ln }\left| 1 + x^2 \right| + \frac{1}{2 \left( 1 + x^2 \right)} + C...... \left( \because t = 1 + x^2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 35 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×