English

∫ ( X + 2 ) √ 3 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]
Sum

Solution

\[Let I = \int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\text{Putting 3x + 5 }= t\]
\[ \Rightarrow x = \frac{t - 5}{3}\]

\[\Rightarrow 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]

` ∴ I = ∫ ( {t-5} /3 +2) \sqrt t    dt/3 `
`  =1/3   ∫ ( {t-5+6} /3 ) \sqrt t    dt `
\[ = \frac{1}{9}\int\left( t^\frac{3}{2} + t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{9}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} t^\frac{5}{2} + \frac{2}{3} t^\frac{3}{2} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} \left( 3x + 5 \right)^\frac{5}{2} + \frac{2}{3} \left( 3x + 5 \right)^\frac{3}{2} \right] + C \left[ \because t = 3x + 5 \right]\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{3x + 5}{5} + \frac{1}{3} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 15 + 5}{15} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 20}{15} \right\} \right] + C\]
\[ = \frac{2}{135} \left( 3x + 5 \right)^\frac{3}{2} \left( 9x + 20 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.05 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.05 | Q 4 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x \cos x\ dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×