Advertisements
Advertisements
Question
Solution
\[Let I = \int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\text{Putting 3x + 5 }= t\]
\[ \Rightarrow x = \frac{t - 5}{3}\]
\[\Rightarrow 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]
` ∴ I = ∫ ( {t-5} /3 +2) \sqrt t dt/3 `
` =1/3 ∫ ( {t-5+6} /3 ) \sqrt t dt `
\[ = \frac{1}{9}\int\left( t^\frac{3}{2} + t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{9}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} t^\frac{5}{2} + \frac{2}{3} t^\frac{3}{2} \right] + C\]
\[ = \frac{1}{9}\left[ \frac{2}{5} \left( 3x + 5 \right)^\frac{5}{2} + \frac{2}{3} \left( 3x + 5 \right)^\frac{3}{2} \right] + C \left[ \because t = 3x + 5 \right]\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{3x + 5}{5} + \frac{1}{3} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 15 + 5}{15} \right\} \right] + C\]
\[ = \frac{2}{9}\left[ \left( 3x + 5 \right)^\frac{3}{2} \left\{ \frac{9x + 20}{15} \right\} \right] + C\]
\[ = \frac{2}{135} \left( 3x + 5 \right)^\frac{3}{2} \left( 9x + 20 \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]