English

∫ 1 √ X + 4 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
Sum

Solution

\[\text{ Let  I } = \int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[ \text{ Let  x }= t^4 \]
\[ \text{On differentiating both sides, we get}\]
\[ dx = 4 t^3 dt\]
\[ \therefore I = \int\frac{4 t^3}{\sqrt{t^4} + \sqrt[4]{t^4}}dt\]
\[ = \int\frac{4 t^3}{t^2 + t}dt\]
\[ = 4\int\frac{t^2}{t + 1}dt\]


\[ = 4\int\frac{\left( t - 1 \right)\left( t + 1 \right) + 1}{t + 1}dt\]
\[ = 4\int\left[ \left( t - 1 \right) + \frac{1}{t + 1} \right]dt\]
\[ = 4\left[ \frac{t^2}{2} - t + \log\left( t + 1 \right) \right] + c\]
\[ = 2\sqrt{x} - 4\sqrt[4]{x} + 4 \log\left( \sqrt[4]{x} + 1 \right) + c\]
\[Hence, \int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx = 2\sqrt{x} - 4\sqrt[4]{x} + 4 \log\left( \sqrt[4]{x} + 1 \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.10 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.10 | Q 9 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×