Advertisements
Advertisements
Question
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
Sum
Solution
\[\int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2x - 2 + 2 - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left( \frac{2 \left( x - 1 \right)}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^2} \right)dx\]
\[ = 2\int\frac{dx}{x - 1} + \int \left( x - 1 \right)^{- 2} dx\]
\[ = \text{2 ln }\left| x - 1 \right| + \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \text{2 ln }\left| x - 1 \right| - \frac{1}{x - 1} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
` ∫ tan^5 x sec ^4 x dx `
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`