Advertisements
Advertisements
Question
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
Sum
Solution
` ∫ {x dx}/{\sqrt{x^4 + a^4}} `
` ∫ {x dx}/\sqrt{(x^2)^2 + (a^2)^2}`
` \text{ let} x^2 = t `
\[ \Rightarrow\text{ 2x dx } = dt\]
\[ \Rightarrow\text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/\sqrt{(x^2)^2 + (a^2)^2}`
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t^2 + \left( a^2 \right)^2}}\]
\[ = \frac{1}{2} \text{ log }\left| t + \sqrt{t^2 + a^4} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + \sqrt{x^4 + a^4} \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int x^3 \cos x^4 dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int \cot^6 x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]