English

∫ X √ X 4 + a 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
Sum

Solution

 

` ∫  {x  dx}/{\sqrt{x^4 + a^4}} `

 ` ∫  {x  dx}/\sqrt{(x^2)^2 + (a^2)^2}`
` \text{  let}   x^2 = t `
\[ \Rightarrow\text{  2x dx } = dt\]
\[ \Rightarrow\text{  x dx } = \frac{dt}{2}\]
Now,  ` ∫  {x  dx}/\sqrt{(x^2)^2 + (a^2)^2}`
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t^2 + \left( a^2 \right)^2}}\]
\[ = \frac{1}{2} \text{ log }\left| t + \sqrt{t^2 + a^4} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + \sqrt{x^4 + a^4} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 98]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 1 | Page 98

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \cos x^4 dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^6 x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \sec^4 x\ dx\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×