English

∫ X 2 X 2 + 7 X + 10 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
Sum

Solution

\[\text{  Let  I } = \int\left( \frac{x^2}{x^2 + 7x + 10} \right)dx\]
\[\text{ Now }, \]



\[ \therefore \frac{x^2}{x^2 + 7x + 10} = 1 - \frac{\left( 7x + 10 \right)}{x^2 + 7x + 10}\]
\[ \Rightarrow \frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x^2 + 2x + 5x + 10} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left( \frac{7x + 10}{x \left( x + 2 \right) + 5 \left( x + 2 \right)} \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 - \left[ \frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} \right] . . . . . \left( 1 \right)\]
\[\text{ Consider, }\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{A}{\left( x + 2 \right)} + \frac{B}{x + 5}\]
\[7x + 10 = A \left( x + 5 \right) + B \left( x + 2 \right)\]
\[\text{ let } x + 5 = 0\]
\[x = - 5\]
\[ \Rightarrow 7 \left( - 5 \right) + 10 = A \times 0 + B \left( - 5 + 2 \right)\]
\[ - 25 = B \left( - 3 \right)\]
\[ \Rightarrow B = \frac{25}{3}\]
\[\text{ let } x + 2 = 0\]
\[x = - 2\]
\[7 \left( - 2 \right) + 10 = A \left( - 2 + 5 \right)\]
\[ \Rightarrow - 4 = A \left( 3 \right)\]
\[ \Rightarrow A = - \frac{4}{3}\]
\[\frac{7x + 10}{\left( x + 2 \right) \left( x + 5 \right)} = \frac{- 4}{3 \left( x + 2 \right)} + \frac{25}{3 \left( x + 5 \right)} . . . . . \left( 2 \right)\]
\[\text{ from }\left( 1 \right) \text{ and } \left( 2 \right)\]
\[\frac{x^2}{x^2 + 7x + 10} = 1 + \frac{4}{3 \left( x + 2 \right)} - \frac{25}{3 \left( x + 5 \right)}\]
\[ \Rightarrow \int\frac{x^2 dx}{x^2 + 7x + 10} = \int dx + \frac{4}{3}\int\frac{dx}{x + 2} - \frac{25}{3}\int\frac{dx}{x + 5}\]
\[ = x + \frac{4}{3} \text{ log } \left| x + 2 \right| - \frac{25}{3} \text{ log } \left| x + 5 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 5 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×