English

∫ 1 Sin ( X − a ) Sin ( X − B ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
Sum

Solution

\[\int\frac{1}{\text{ sin} \left( x - a \right) \cdot \text{ sin}\left( x - b \right)}dx\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left( b - a \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin }\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\frac{\text{ sin}\left[ \left( x - a \right) - \left( x - b \right) \right]}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin }\left( b - a \right)}\int\frac{\text{ sin }\left( x - a \right) \cdot \cos \left( x - b \right) - \text{ cos} \left( x - a \right) \text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \frac{\text{ sin}\left( x - a \right) \cdot \text{ cos}\left( x - b \right)}{\text{ sin}\left( x - a \right) \cdot \text{ sin}\left( x - b \right)} - \frac{\text{ cos}\left( x - a \right) \text{ sin}\left( x - b \right)}{\sin \left( x - a \right) \text{ sin}\left( x - b \right)} \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\left[ \text{ cot}\left( x - b \right) - \text{ cot}\left( x - a \right) \right] \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\int\text{ cot}\left( x - b \right) dx - \int\text{ cot}\left( x - a \right) \text{ dx }\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \text{ sin}\left( x - b \right) \right| - \text{ ln} \left| \text{ sin}\left( x - a \right) \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( b - a \right)}\left[ \text{ ln }\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{- 1}{\text{ sin}\left( a - b \right)}\left[ \text{ ln}\left| \frac{\text{ sin}\left( x - b \right)}{\text{ sin}\left( x - a \right)} \right| \right] + C\]
\[ = \frac{1}{\text{ sin}\left( a - b \right)} \text{ ln }\left| \frac{\text{ sin}\left( x - a \right)}{\sin \left( x - b \right)} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 24 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×