English

∫ 3 + 4 X − X 2 ( X + 2 ) ( X − 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
Sum

Solution

\[\int\left( \frac{3 + 4x - x^2}{x^2 - x + 2x - 2} \right)dx\]
\[ = \int\left( \frac{- x^2 + 4x + 3}{x^2 + x - 2} \right)dx\]
\[\frac{- x^2 + 4x + 3}{x^2 + x - 2} = - 1 + \frac{5x + 1}{x^2 + x - 2} .............(1)\]
\[ \therefore \frac{5x + 1}{x^2 + x - 2} = \frac{5x + 1}{x^2 + 2x - x - 2}\]
\[ = \frac{5x + 1}{x\left( x + 2 \right) - 1\left( x + 2 \right)}\]
\[\text{Let }\frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 2}\]
\[ \Rightarrow \frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{A\left( x + 2 \right) + B\left( x - 1 \right)}{\left( x - 1 \right)\left( x + 2 \right)}\]
\[ \Rightarrow 5x + 1 = A\left( x + 2 \right) + B\left( x - 1 \right) ..........(2)\]
\[\text{Putting }x + 2 = 0\text{ or }x = - 2\text{ in eq. (2)}\]
\[ \Rightarrow 5x - 2 + 1 = A \times 0 + B\left( - 2 - 1 \right)\]
\[ \Rightarrow B = 3\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (2)}\]
\[ \Rightarrow 5 \times 1 + 1 = A\left( 3 \right) + B \times 0\]
\[ \Rightarrow A = 2\]
\[ \therefore \frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{2}{x - 1} + \frac{3}{x + 2} ............(3)\]
From (1) and (3)
\[\frac{- x^2 + 4x + 3}{x^2 + x - 2} = - 1 + \frac{2}{x - 1} + \frac{3}{x + 2}\]
\[ \Rightarrow \int\frac{- x^2 + 4x + 3}{x^2 + x - 2}dx = \int - 1 dx + \int\frac{2}{x - 1}dx + \int\frac{3}{x + 2} dx\]
\[ = - x + 2 \ln\left( x - 1 \right) + 3 \ln\left( x + 2 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 4 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×