English

∫ 2 X + 1 √ X 2 + 4 X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{\left( 2x + 1 \right) dx}{\sqrt{x^2 + 4x + 3}}\]
\[\text{ Consider,} \]
\[2x + 1 = A \frac{d}{dx} \left( x^2 + 4x + 3 \right) + B\]
\[ \Rightarrow 2x + 1 = A \left( 2x + 4 \right) + B\]
\[ \Rightarrow 2x + 1 = \left( 2A \right) x + 4A + B\]
\[\text{Equating Coefficients of like terms}\]
\[\text{ 2 A} = 2 \]
\[ \Rightarrow A = 1\]
\[\text{ And }\]
\[4A + B = 1\]
\[ \Rightarrow 4 + B = 1\]
\[ \Rightarrow B = - 3\]
\[ \therefore I = \int\left( \frac{2x + 4 - 3}{\sqrt{x^2 + 4x + 3}} \right)dx\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 3}} - 3\int\frac{dx}{\sqrt{x^2 + 4x + 4 - 4 + 3}}\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 3}} - 3\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \int\frac{dt}{\sqrt{t}} - 3\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[ = \int t^{- \frac{1}{2}} dt - 3 \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[ = \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] - 3 \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 - 1} \right| + C\]
\[ = 2\sqrt{t} - 3 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C\]
\[ = 2\sqrt{x^2 + 4x + 3} - 3 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 15 | Page 111

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \sec^4 2x \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int2 x^3 e^{x^2} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×