Advertisements
Advertisements
Question
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
Sum
Solution
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)}dx\]
\[\text{Let x e}^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + \text{x e}^x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + 1 \right) \text{e}^x dx = dt\]
\[Now, \int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)}dx\]
\[ = \int\frac{dt}{\sin^2 t}\]
\[ = \int {cosec}^2 \text{t dt} \]
\[ = - \text{cot} \left( t \right) + C\]
\[ = - \text{cot} \left( \text{x e}^x \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]