Advertisements
Advertisements
Question
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
Options
ex f (x) + C
ex + f (x)
2ex f (x)
ex − f (x)
MCQ
Solution
ex f (x) + C
\[\text{Let }I = \int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\}dx\]
\[\text{Putting }e^x f\left( x \right) = t\]
\[ \Rightarrow \left[ e^x \cdot f\left( x \right) + e^x f'\left( x \right) \right]dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x f\left( x \right) + C .............\left[ \because t = e^x f\left( x \right) \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \cos^3 (3x)\ dx\]
\[\int \cot^4 x\ dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]