English

∫ E X { F ( X ) + F ′ ( X ) } D X = - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

Options

  • ex f (x) + C

  • ex + (x)

  •  2ex f (x)

  •  ex − f (x)

MCQ

Solution

ex f (x) + C

 

\[\text{Let }I = \int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\}dx\]

\[\text{Putting }e^x f\left( x \right) = t\]

\[ \Rightarrow \left[ e^x \cdot f\left( x \right) + e^x f'\left( x \right) \right]dx = dt\]

\[ \therefore I = \int dt\]

\[ = t + C\]

\[ = e^x f\left( x \right) + C .............\left[ \because t = e^x f\left( x \right) \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 202]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 27 | Page 202

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \cos^3 (3x)\ dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×