English

∫ ( X + 1 ) √ 2 X 2 + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
Sum

Solution

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\text{ Also, x} + 1 = \lambda\frac{d}{dx}\left( 2 x^2 + 3 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 4x \right) + \mu\]
\[\text{Equating coefficient of like terms}\]
\[4\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{4} \text{ and }\mu = 1\]
\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x \right) + 1 \right] \sqrt{2 x^2 + 3} \text{ dx}\]
\[ = \frac{1}{4}\int \left( 4x \right) \sqrt{2 x^2 + 3} \text{ dx}+ \int\sqrt{2 x^2 + 3} \text{ dx}\]
\[ = \frac{1}{4}\int\left( 4x \right)\sqrt{2 x^2 + 3}\text{ dx}+ \int\sqrt{2\left( x^2 + \frac{3}{2} \right)}\text{ dx}\]
\[ = \frac{1}{4}\int\left( 4x \right) \sqrt{2 x^2 + 3} \text{ dx}+ \sqrt{2} \int\sqrt{x^2 + \left( \frac{\sqrt{3}}{\sqrt{2}} \right)^2} \text{ dx}\]
\[\text{ Let 2 x}^2 + 3 = t\]
\[ \Rightarrow 4x \text{ dx}= dt\]
\[ \therefore I = \frac{1}{4}\int \sqrt{t}\text{  dt} + \sqrt{2}\left[ \frac{x}{2}\sqrt{x^2 + \frac{3}{2}} + \frac{3}{4}\text{ log }\left| x + \sqrt{x^2 + \frac{3}{2}} \right| \right]\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] + \sqrt{2}\frac{x}{2}\frac{\sqrt{2 x^2 + 3}}{\sqrt{2}} + \frac{3\sqrt{2}}{4}\text{ log } \left| x + \frac{\sqrt{2 x^2 + 3}}{\sqrt{2}} \right| + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log } \left| \frac{\sqrt{2}x + \sqrt{2 x^2 + 3}}{\sqrt{2}} \right| + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log }\left| \sqrt{2}x + \sqrt{2 x^2 + 3} \right| - \frac{3\sqrt{2}}{4}\text{ log }\sqrt{2} + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log }\left| \sqrt{2}x + \sqrt{2 x^2 + 3} \right| + C'\]
\[\text{ Where C' = C} - \frac{3\sqrt{2}}{4}\text{ log } \sqrt{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 158]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 2 | Page 158

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×