English

∫ Log ( 1 − X ) X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
Sum

Solution

\[\text{ Let I }= \int\frac{\log \left( 1 - x \right)}{x^2}dx\]
\[ = \int \frac{1}{x^2}_{II} \log \left( 1_I - x \right) \text{ dx}\]
\[ = \text{ log }\left( 1 - x \right)\int x^{- 2} dx - \int\frac{- 1}{1 - x} \times \left( \frac{x^{- 2 + 1}}{- 2 + 1} \right) dx\]
\[ = \text{ log} \left( 1 - x \right) \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \int\frac{- 1}{\left( 1 - x \right) x}dx\]
\[ = \text{ log} \left( 1 - x \right) \times \left( - \frac{1}{x} \right) + \int\frac{1}{x^2 - x}dx\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \int\frac{1}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \int\frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \frac{1}{2 \times \frac{1}{2}} \text{ log} \left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right| + C\]
\[ = - \frac{\text{ log }\left( 1 - x \right)}{x} + \text{ log} \left| \frac{x - 1}{x} \right| + C\]
\[ = - \frac{\text{ log} \left( 1 - x \right)}{x} + \text{ log }\left| \left( x - 1 \right) \right| - \log x + C\]
\[ = - \frac{\text{ log} \left| 1 - x \right|}{x} + \text{ log }\left| 1 - x \right| - \text{ log }\left| x \right| + C\]
\[ = \left( 1 - \frac{1}{x} \right) \text{ log} \left| 1 - x \right| - \text{ log} \left| x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 99 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x \cos x\ dx\]

\[\int x^3 \text{ log x dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×