Advertisements
Advertisements
Question
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
Sum
Solution
` ∫ sin x \sqrt{ 1 + \text{cos 2 x dx} `
` = ∫ sin x . \sqrt{ 2cos ^2 x} dx ` ` [∴ 1 + cos 2x = 2 cos^2 X]`
\[ = \sqrt{2}\int\text{sin x }\text{cos x dx}\]
\[ = \frac{\sqrt{2}}{2}\int\text{2 }\text{sin x } \text{cos x dx}\]
\[ = \frac{1}{\sqrt{2}}\int\text{sin 2x dx}\]
\[ = \frac{1}{\sqrt{2}}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = \frac{- 1}{2\sqrt{2}}\cos 2x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]