Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int\frac{1}{1 - \cot x}dx\]
\[ = \int\frac{1}{1 - \frac{\cos x}{\sin x}}dx\]
\[ = \int\frac{\sin x}{\sin x - \cos x}dx\]
\[ = \frac{1}{2}\int\frac{2 \sin x}{\sin x - \cos x} dx\]
\[ = \frac{1}{2}\int\left[ \frac{\sin x + \cos x + \sin x - \cos x}{\sin x - \cos x} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx + \frac{1}{2}\int dx\]
\[\text{ Putting sin x }- \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt + \frac{1}{2}\int dx\]
\[ = \frac{1}{2} \text{ ln }\left| t \right| + \frac{x}{2} + C\]
\[ = \frac{x}{2} + \frac{1}{2} \text{ ln }\left| \sin x - \cos x \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` = ∫ root (3){ cos^2 x} sin x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\text{ cos x cos 2x cos 3x dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`