English

∫ 1 1 − Cot X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 - \cot x} dx\]
Sum

Solution

\[\text{ Let I }= \int\frac{1}{1 - \cot x}dx\]
\[ = \int\frac{1}{1 - \frac{\cos x}{\sin x}}dx\]
\[ = \int\frac{\sin x}{\sin x - \cos x}dx\]
\[ = \frac{1}{2}\int\frac{2 \sin x}{\sin x - \cos x} dx\]
\[ = \frac{1}{2}\int\left[ \frac{\sin x + \cos x + \sin x - \cos x}{\sin x - \cos x} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx + \frac{1}{2}\int dx\]
\[\text{ Putting sin x }- \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt + \frac{1}{2}\int dx\]
\[ = \frac{1}{2} \text{ ln }\left| t \right| + \frac{x}{2} + C\]
\[ = \frac{x}{2} + \frac{1}{2} \text{ ln }\left| \sin x - \cos x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 1 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×