Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{x^3}{x - 2} \right)dx\]
\[ = \int\left( \frac{x^3 - 8 + 8}{x - 2} \right)dx\]
\[ = \int\left[ \frac{\left( x^3 - 2^3 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left[ \frac{\left( x - 2 \right)\left( x^2 + 2x + 4 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left( x^2 + 2x + 4 \right)dx + 8\int\frac{dx}{x - 2}\]
\[ = \frac{x^3}{3} + \frac{2 x^2}{2} + 4x + \text{8 ln} \left| x - 2 \right| + C\]
\[ = \frac{x^3}{3} + x^2 + 4x + \text{8 ln }\left| x - 2 \right| + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ tan x sec^4 x dx `
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]