हिंदी

∫ X 3 X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{x - 2} dx\]
योग

उत्तर

\[\int\left( \frac{x^3}{x - 2} \right)dx\]
\[ = \int\left( \frac{x^3 - 8 + 8}{x - 2} \right)dx\]
\[ = \int\left[ \frac{\left( x^3 - 2^3 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left[ \frac{\left( x - 2 \right)\left( x^2 + 2x + 4 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left( x^2 + 2x + 4 \right)dx + 8\int\frac{dx}{x - 2}\]
\[ = \frac{x^3}{3} + \frac{2 x^2}{2} + 4x + \text{8 ln} \left| x - 2 \right| + C\]
\[ = \frac{x^3}{3} + x^2 + 4x + \text{8 ln }\left| x - 2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.04 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.04 | Q 2 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×