Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{x^3}{x - 2} \right)dx\]
\[ = \int\left( \frac{x^3 - 8 + 8}{x - 2} \right)dx\]
\[ = \int\left[ \frac{\left( x^3 - 2^3 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left[ \frac{\left( x - 2 \right)\left( x^2 + 2x + 4 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left( x^2 + 2x + 4 \right)dx + 8\int\frac{dx}{x - 2}\]
\[ = \frac{x^3}{3} + \frac{2 x^2}{2} + 4x + \text{8 ln} \left| x - 2 \right| + C\]
\[ = \frac{x^3}{3} + x^2 + 4x + \text{8 ln }\left| x - 2 \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int \sec^4 x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]