हिंदी

∫1cosx-sinxdx - Mathematics

Advertisements
Advertisements

प्रश्न

`int 1/(cos x - sin x)dx`
योग

उत्तर

Given I = `int 1/(cos x - sin x)dx`

We know that sin x = `(2 tan (x/2))/(1 + tan^2 (x/2)) and cos x = (1 - tan^2 (x/2))/(1 + tan^2 (x/2))`

⇒ `int 1/(-sin x + cos x)dx = int 1/(- (2 tan (x/2))/(1 + tan^2 (x/2)) + (1 - tan^2 (x/2))/(1 + tan^2 (x/2)))`

= `int (1 + tan^2 (x/2))/(-2 tan (x/2)+1 - tan^2 (x/2))dx`

Replacing 1 + tan2 x/2 in numerator by sec2 x/2 and putting tan x/2 = t and sec2 x/2 dx = 

⇒ `int (1 + tan^2 (x/2))/(-2 tan (x/2) + 1 - tan^2 (x/2))dx`

= `int (sec^2 (x/2))/(- tan^2 (x/2) - 2 tan (x/2) + 1) dx`

= `- int (2dt)/(t^2 + 2t - 1)`

= `-2 int 1/((t + 1)^2 - (sqrt2)^2)dt`

= `2 int 1/((sqrt2)^2 - (t + 1)^2)dt`

We know that `int 1/(a^2 - x^2)dx = 1/(2a) log |(a + x)/(a - x)| + c`

= `2 int 1/((sqrt2)^2 - (t + 1)^2)dt`

= `2/(2sqrt2)log|(sqrt2 + t + 1)/(sqrt2 - t - 1)|+c`

= `1/sqrt2 log|(sqrt2 + tan (x/2)+1)/(sqrt2 - tan (x/2)-1)| + c`

= `1/sqrt2 log |(sqrt2 + tan (x/2) +1)/(sqrt2 - tan (x/2)-1)| + c`

∴ I = `int 1/(cos x - sin x)dx = 1/sqrt2 log |(sqrt2 + tan (x/2)+ 1)/(sqrt2 - tan (x/2) - 1)|+x`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.23 | Q 8 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×