हिंदी

∫ E X ( 1 − X ) 2 ( 1 + X 2 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \right]dx\]

\[ = \int e^x \left[ \frac{1 + x^2 - 2x}{\left( 1 + x^2 \right)^2} \right]dx\]

\[ = \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx\]

\[\text{ Here,} f(x) = \frac{1}{1 + x^2}\]

\[ \Rightarrow f'(x) = \frac{- 2x}{\left( 1 + x^2 \right)^2}\]

\[\text{ Put e}^x f(x) = t\]

\[ \Rightarrow e^x \frac{1}{1 + x^2} = t\]

\[\text{ Diff both sides w . r . t x }\]

\[ e^x \frac{1}{1 + x^2} + e^x \frac{- 1}{\left( 1 + x^2 \right)^2}2x = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = \frac{e^x}{1 + x^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 12 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×