Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left[ \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \right]dx\]
\[ = \int e^x \left[ \frac{1 + x^2 - 2x}{\left( 1 + x^2 \right)^2} \right]dx\]
\[ = \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx\]
\[\text{ Here,} f(x) = \frac{1}{1 + x^2}\]
\[ \Rightarrow f'(x) = \frac{- 2x}{\left( 1 + x^2 \right)^2}\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \frac{1}{1 + x^2} = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \frac{1}{1 + x^2} + e^x \frac{- 1}{\left( 1 + x^2 \right)^2}2x = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = dt\]
\[ \therefore \int e^x \left[ \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right]dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = \frac{e^x}{1 + x^2} + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
Evaluate the following integral:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to