हिंदी

∫ 1 3 + 4 Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{3 + 4 \cot x} dx\]
योग

उत्तर

\[\text{ Let I }= \int\frac{1}{3 + 4 \cot x}dx\]
\[ = \int\frac{1}{3 + \frac{4 \cos x}{\sin x}}dx\]
\[ = \int\frac{\sin x}{3 \sin x + 4 \cos x}dx\]
\[\text{ Let sin x = A }\left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . (1)\]
\[ \Rightarrow \sin x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]
\[\text{By comparing the coefficients of both sides we get} , \]
\[3A - 4B = 1 . . . \left( 2 \right)\]
\[4A + 3B = 0 . . . \left( 3 \right)\]

Multiplying eq (2) by 3 and equation (3) by 4 , then by adding them we get

\[9A - 12B + 16A + 12B = 3 + 0\]
\[ \Rightarrow 25A = 3\]
\[ \Rightarrow A = \frac{3}{25}\]
\[\text{  Putting value of A in eq }\left( 3 \right) \text{ we get,} \]
\[4 \times \frac{3}{25} + 3B = 0\]
\[ \Rightarrow 3B = - \frac{12}{25}\]
\[ \Rightarrow B = - \frac{4}{25}\]

\[\text{ Thus, by substituting the value of A and B in eq (1) we get }\]
\[I = \int\left[ \frac{\frac{3}{25}\left( 3 \sin x + 4 \cos x \right) - \frac{4}{25}\left( 3 \cos x - 4 \sin x \right)}{3 \sin x + 4 \cos x} \right]dx\]
\[ = \frac{3}{25}\int dx - \frac{4}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{  Putting   3  sin x + 4  cos x = t}\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{3}{25}\int dx - \frac{4}{25}\int\frac{dt}{t}\]
\[ = \frac{3}{25}x - \frac{4}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{3x}{25} - \frac{4}{25} \text{ ln }\left| 3 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 7 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \cos^2 \frac{x}{2} dx\]

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×