हिंदी

∫ X Sin X Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \sin x \cos x\ dx\]

 

योग

उत्तर

\[\int x\sin x \cdot \text{ cos x dx }\]
\[ = \frac{1}{2}\int x\left( 2 \sin x \cos x \right) dx\]
\[ = \frac{1}{2}\int x_{} \cdot \sin \left( 2x \right)_{} dx\]
\[\text{Taking x as the first function and sin 2x as the second function} . \]
\[ = \frac{1}{2}\left[ x\int\text{ sin 2x dx } - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx } \right\}dx \right]\]
\[ = \frac{1}{2}\left[ x \times \frac{- \text{ cos }\left( 2x \right)}{2} - \int1 \cdot \left( \frac{- \cos 2x}{2} \right)dx \right]\]
\[ = \frac{1}{2}\left[ \frac{- x \text{ cos
}\left( 2x \right)}{2} + \frac{\text{ sin } \left( 2x \right)}{4} \right] + C\]
\[ = \frac{- x \text{ cos } \left( 2x \right)}{4} + \frac{\text{ sin }\left( 2x \right)}{8} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 19 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×