Advertisements
Advertisements
प्रश्न
\[\int {cosec}^4 2x\ dx\]
योग
उत्तर
\[\text{ Let I } = \int {cosec}^4 \text{ 2x dx}\]
\[ = \int {cosec}^2 \text{ 2x } \cdot {cosec}^2 \text{ 2x dx }\]
\[ = \int\left( 1 + \cot^2 2x \right) \cdot {cosec}^2 \text{ 2x dx }\]
\[\text{ Putting cot 2x = t}\]
\[ \Rightarrow - {cosec}^2 \left( 2x \right) \cdot \text{ 2 dx = dt}\]
\[ \Rightarrow {cosec}^2 \left( 2x \right) \cdot dx = \frac{- dt}{2}\]
\[ \therefore I = - \frac{1}{2}\int\left( 1 + t^2 \right) \cdot dt\]
\[ = - \frac{1}{2} \left[ t + \frac{t^3}{3} \right] + C\]
\[ = - \frac{1}{2}\cot 2x + \frac{1}{6} \cot^3 2x + C ...........\left[ \because t = \cot 2x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int {cosec}^3 x\ dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int\frac{\cos^7 x}{\sin x} dx\]