हिंदी

∫ X 2 + X + 1 ( X + 1 ) 2 ( X + 2 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\text{ Let }\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2} . . . . . \left( 1 \right)\]
\[ \Rightarrow x^2 + x + 1 = A\left( x + 1 \right)\left( x + 2 \right) + B\left( x + 2 \right) + C \left( x + 1 \right)^2 . . . . . \left( 2 \right)\]
\[ \text{ Putting x = - 1 in }\left( 2 \right), \text{we get}\]
\[ B = 1\]
\[ \text{ Putting x = - 2 in }\left( 2 \right), \text{we get}\]
\[ C = 3\]
\[ \text{ Putting x = 0 in} \left( 2 \right), \text{we get}\]
\[1 = 2A + 2B + C\]
\[ \Rightarrow 1 = 2A + 2 + 3\]
\[ \Rightarrow - 4 = 2A\]
\[ \Rightarrow A = - 2\]
\[\text{Now}, \left( 1 \right) \text{becomes}\]
\[\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2}\]
\[\text{Therefore, integral becomes}\]
\[I = \int\left[ \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2} \right]dx\]
\[ = - 2 \text{ log} \left| x + 1 \right| - \frac{1}{\left( x + 1 \right)} + 3 \text{ log} \left| x + 2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 128 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×