हिंदी

∫ 5 X ( X + 1 ) ( X 2 − 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
योग

उत्तर

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)}dx\]
\[\text{Let }\frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} + \frac{C}{x + 2}\]
\[ \Rightarrow \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{A \left( x - 2 \right) \left( x + 2 \right) + B \left( x + 1 \right) \left( x + 2 \right) + C \left( x + 1 \right) \left( x - 2 \right)}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)}\]
\[ \Rightarrow 5x = A \left( x - 2 \right) \left( x + 2 \right) + B \left( x + 1 \right) \left( x + 2 \right) + C \left( x + 1 \right) \left( x - 2 \right)...........(1)\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (1)}\]
\[ \Rightarrow 5 \times 2 = B \left( 2 + 1 \right) \left( 2 + 2 \right)\]
\[ \Rightarrow B = \frac{10}{3 \times 4}\]
\[ = \frac{5}{6}\]
\[\text{Putting }x + 2 = 0\text{ or }x = - 2\text{ in eq. (1)}\]
\[ \Rightarrow 5 \times - 2 = C \left( - 2 + 1 \right) \left( - 2 - 2 \right)\]
\[ \Rightarrow \frac{- 10}{- 1 \times - 4} = C\]
\[ \Rightarrow C = \frac{- 5}{2}\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow - 5 = A \left( - 1 - 2 \right) \left( - 1 + 2 \right)\]
\[ \Rightarrow \frac{- 5}{- 3} = A\]
\[ \Rightarrow A = \frac{5}{3}\]
\[ \therefore \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{5}{3} \times \frac{1}{x + 1} + \frac{5}{6 \left( x - 2 \right)} - \frac{5}{2 \left( x + 2 \right)}\]
\[ \Rightarrow \frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)} = \frac{5}{6} \times \frac{2}{x + 1} + \frac{5}{6 \left( x - 2 \right)} - \frac{5}{6} \left( \frac{3}{x + 2} \right)\]
\[ \therefore \int\frac{5x}{\left( x + 1 \right) \left( x - 2 \right) \left( x + 2 \right)}dx = \frac{5}{6}\int\frac{2}{x + 1} dx + \frac{5}{6}\int\frac{1}{x - 2}dx - \frac{5}{6}\int\frac{3}{x + 2} dx\]
\[ = \frac{5}{6}\left[ 2 \ln \left| x + 1 \right| + \ln \left| x - 2 \right| - 3 \ln \left| x + 2 \right| \right] + C\]
\[ = \frac{5}{6} \left[ \ln \left| x + 1 \right|^2 + \ln \left| x - 2 \right| - \ln \left| x + 2 \right|^3 \right] + C\]
\[ = \frac{5}{6} \ln \left| \frac{\left( x + 1 \right)^2 \left( x - 2 \right)}{\left( x + 2 \right)^3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 7 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^3 x\ dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×