हिंदी

∫ 2 X ( X 2 + 1 ) ( X 2 + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
योग

उत्तर

We have,
\[I = \int\frac{2x dx}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)}\]
\[\text{Putting }x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A}{t + 1} + \frac{B}{t + 3}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 3 \right)} = \frac{A \left( t + 3 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( t + 3 \right)}\]
\[ \Rightarrow 1 = A \left( t + 3 \right) + B \left( t + 1 \right)\]
Putting t + 3 = 0
\[ \Rightarrow t = - 3\]
\[1 = A \times 0 + B \left( - 3 + 1 \right)\]
\[ \Rightarrow B = - \frac{1}{2}\]
Putting t + 1 = 0
\[ \Rightarrow t = - 1\]
\[1 = A \left( - 1 + 3 \right) + B \left( - 1 + 1 \right)\]
\[ \Rightarrow 1 = A \times 2 + B \times 0\]
\[ \Rightarrow A = \frac{1}{2}\]
Then,
\[I = \frac{1}{2}\int\frac{dt}{t + 1} - \frac{1}{2}\int\frac{dt}{t + 3}\]
\[ = \frac{1}{2} \log \left| t + 1 \right| - \frac{1}{2} \log \left| t + 3 \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{t + 1}{t + 3} \right| + C\]
\[ = \frac{1}{2} \log \left| \frac{x^2 + 1}{x^2 + 3} \right| + C\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 12 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×