हिंदी

∫ X 5 + X − 2 + 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
योग

उत्तर

\[\int\left( \frac{x^5 + x^{- 2} + 2}{x^2} \right)dx\]
\[ = \int \left( \frac{x^5}{x^2} + \frac{x^{- 2}}{x^2} + \frac{2}{x^2} \right)dx\]
\[ = \int\left( x^3 + x^{- 4} + 2 x^{- 2} \right)dx\]
\[ = \frac{x^{3 + 1}}{3 + 1} + \frac{x^{- 4 + 1}}{- 4 + 1} + 2\frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^4}{4} - \frac{1}{3 x^3} - \frac{2}{x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 17 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^4 2x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x \cos x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cos^3 (3x)\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×