Advertisements
Advertisements
प्रश्न
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
योग
उत्तर
\[\text{We have}, \]
\[I = \int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right)dx\]
\[ = \int e^{2x} \left( \frac{1}{1 + \cos 2x} + \frac{\sin 2x}{1 + \cos 2x} \right)dx\]
\[ = \int e^{2x} \left( \frac{1}{2 \cos^2 x} + \frac{2 \sin x \cos x}{2 \cos^2 x} \right)dx\]
\[ = \int e^{2x} \left( \frac{\sec^2 x}{2} + \tan x \right)dx\]
\[\text{ Let e}^{2x} \tan x = t\]
\[ \Rightarrow \left( e^{2x} \sec^2 x + 2 e^{2x} \tan x \right)dx = dt\]
\[ = \left[ \frac{e^{2x} \sec^2 x}{2} + e^{2x} \tan x \right]dx = \frac{dt}{2}\]
\[ \therefore I = \int \frac{dt}{2}\]
\[ = \frac{t}{2} + C\]
\[ = \frac{e^{2x} \tan x}{2} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int \sin^5 x\ dx\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]