हिंदी

∫ Cos 7 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^7 x \text{ dx  } \]
योग

उत्तर

∫​ cos7 x dx
= ​∫ cos6 x . cos x dx
= ∫ (cos2 x)3 cos x dx

= ∫ (1 – sin2 x)3 . cos x dx
Let sin x = t
⇒ cos x dx = dt

Now, ∫ (1 – sin2 x)3.cos x dx
= ∫ (1 – t2)3 dt
= ∫ (1 – t6 – 3t2 + 3t4) dt

\[= \left[ t - \frac{t^7}{7} - \frac{3 t^3}{3} + \frac{3 t^5}{5} \right] + C\]
\[ = \sin x - \frac{1}{7} \sin^7 x - \sin^3 x + \frac{3}{5} \sin^5 x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.12 | Q 6 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \cos^3 x\ dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×