हिंदी

∫ E X ( 1 − X ) 2 ( 1 + X 2 ) 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
योग

उत्तर १

\[\text{We have}, \]

\[I = \int\frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[ = \int\frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[ = \int e^x \left[ \frac{\left( 1 + x^2 \right)}{\left( 1 + x^2 \right)^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right] \text{ dx }\]

\[ = \int e^x \left( \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right) \text{ dx }\]

\[ = \frac{e^x}{1 + x^2} + C.......................[ ∵  \int e^x { f  ( x ) + f' ( x ) }  \text{ dx }= e^x f( x ) + C\]`   \text{  Where} ,ƒ  (x } =   1/{1+2} ⇒ ƒ ^'  (x )  = -  {2x}/ (1+ x^2)^2 ]`

 

 

shaalaa.com

उत्तर २

\[\text{We have}, \]

\[I = \int\frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} dx\]

\[ = \int\frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2} dx\]

\[ = \int e^x \left[ \frac{\left( 1 + x^2 \right)}{\left( 1 + x^2 \right)^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right] dx\]

\[ = \int e^x \left( \frac{1}{1 + x^2} - \frac{2x}{\left( 1 + x^2 \right)^2} \right) dx\]

\[ = \frac{e^x}{1 + x^2} + C \left[ \because \int e^x \left\{ f\left( x \right) + f'left( x \right) \right\} dx = e^x f\left( x \right) + C\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 120 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×