हिंदी

∫ 3 X + 5 √ 7 X + 9 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
योग

उत्तर

\[\text{Let I }= \int\left( \frac{3x + 5}{\sqrt{7x + 9}} \right)dx\]
\[Putting\ 7x + 9 = t\]
\[ \Rightarrow x = \frac{t - 9}{7}\]

\[\text{and}\ 7dx = dt\]
\[ \Rightarrow dx = \frac{dt}{7}\]

\[\therefore I = \int\left( \frac{3\left( \frac{t - 9}{7} \right) + 5}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{3}{7}\frac{t}{\sqrt{t}} - \frac{27}{7\sqrt{t}} + \frac{5}{\sqrt{t}} \right)\frac{dt}{7}\]


` = 3/(7× 7) ∫ t^{1/2} dt - 27/{7× 7 }   ∫  t ^{-1/2} dt + 5/7 ∫   t ^{-1/2}dt `
\[ = \frac{3}{7 \times 7}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{27}{7 \times 7}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \frac{5}{7}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]


\[ = \frac{2}{7 \times 7} t^\frac{3}{2} - \frac{27}{7 \times 7} \times \text{2 }   t^\frac{1}{2} + \frac{10\sqrt{t}}{7} + C\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} - \frac{54}{7 \times 7} \left( 7x + 9 \right)^\frac{1}{2} + \frac{10}{7}\sqrt{7x + 9} + C \left[ \because t = 7x + 9 \right]\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} + \left( 10 - \frac{54}{7} \right) \frac{\sqrt{7x + 9}}{7} + C\]
\[ = \frac{2}{7} \left( 7x + 9 \right)^\frac{3}{2} + \left( \frac{70 - 54}{7} \right) \frac{\sqrt{7x + 9}}{7} + C\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} + \frac{16}{7 \times 7}\sqrt{7x + 9} + C\]
\[ = \frac{2}{7 \times 7}\left[ \left( 7x + 9 \right)^\frac{1}{2} \left[ 7x + 9 + 8 \right] \right] + C\]
\[ = \frac{2}{49}\left[ \left( 7x + 9 \right)^\frac{1}{2} \left( 7x + 17 \right) \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 6 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×