हिंदी

∫ Sin − 1 ( 2 Tan X 1 + Tan 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
योग

उत्तर

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right)dx\]
\[ = \int \sin^{- 1} \left( \sin 2 x \right)dx \left[ \therefore \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \right]\]
= 2    ∫ x dx
\[ = 2 \left( \frac{x^2}{2} \right) + C\]
\[ = x^2 + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 38 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×