Advertisements
Advertisements
प्रश्न
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
योग
उत्तर
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right)dx\]
\[ = \int \sin^{- 1} \left( \sin 2 x \right)dx \left[ \therefore \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \right]\]
= 2 ∫ x dx
\[ = 2 \left( \frac{x^2}{2} \right) + C\]
\[ = x^2 + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int \sec^6 x\ dx\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]