हिंदी

∫ Sin X Cos 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I} = \int\frac{\sin x}{\text{ cos  2  x}} dx\]
\[ = \int\left( \frac{\sin x}{2 \cos^2 x - 1} \right) dx ...................\left[ \because \cos 2x = 2 \cos^2 x - 1 \right] \]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \text{ sin x dx = dt}\]
\[ \Rightarrow \text{ sin  x  dx  = - dt}  \]
\[ \therefore I = \int\frac{- dt}{2 t^2 - 1}\]
\[ = \frac{1}{2}\int\frac{- dt}{t^2 - \frac{1}{2}}\]
\[ = \frac{- 1}{2}\int\frac{dt}{t^2 - \left( \frac{1}{\sqrt{2}} \right)^2}\]
` =   -1 / 2  ×  1/ 2 × 1/1\sqrt2    In    |{t -1/\sqrt2}/{t+1/\sqrt2 }| + C      ..... [ ∵ ∫ {1}/{x^2 - a^2} = {1}/{2a}\text{ ln } | {x - a}/{x + a} | + C ]  `
\[ = - \frac{1}{2\sqrt{2}} \text{ ln} \left| \frac{\sqrt{2}t - 1}{\sqrt{2}t + 1} \right| + C\]
\[ = - \frac{1}{2\sqrt{2}} \text{ ln }\left| \frac{\sqrt{2} \cos x - 1}{\sqrt{2} \cos x + 1} \right| + C ............\left[ \because t = \cos x \right]\]
\[ = \frac{1}{2\sqrt{2}} \text{ ln} \left| \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x - 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 27 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×