Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \frac{x^2 . \sin^{- 1} x dx}{\left( 1 - x^2 \right)^\frac{3}{2}}\]
\[\text{ Putting x } = \sin \theta \]
\[ \Rightarrow dx = \cos \text{ θ dθ } \]
\[\text{and} \theta = \sin^{- 1} x\]
\[ \therefore I = \int \frac{\sin^2 \theta . \theta . \cos \theta \text{ dθ }}{\left( 1 - \sin^2 \theta \right)^\frac{3}{2}}\]
\[ = \int \frac{\sin^2 \theta . \theta . \cos \text{ θ dθ }}{\left( \cos^2 \theta \right)^\frac{3}{2}}\]
\[ = \int \frac{\sin^2 \theta . \theta . \cos \text{ θ dθ } }{\cos^3 \theta}\]
\[ = \int \tan^2 \theta . \text{ θ dθ } \]
\[ = \int \left( \sec^2 \theta - 1 \right)\theta . d\theta\]
\[ = \int \theta_I . \sec^2_{II} \text{ θ dθ } - \int \theta . d\theta\]
\[ = \theta\int \sec^2 \text{ θ dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int \sec^2 \text{ θ dθ } \right\}d\theta - \int \theta . d\theta\]
\[ = \theta \tan \theta - \int 1 . \tan\text{ θ dθ } - \frac{\theta^2}{2}\]
\[ = \theta . \tan \theta - \text{ ln }\left| \sec \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \theta . \frac{\sin \theta}{\cos \theta} + \text{ ln }\left| \cos \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \theta . \frac{\sin \theta}{\cos \theta} + \text{ ln }\left| \sqrt{1 - \sin^2 \theta} \right| - \frac{\theta^2}{2} + C\]
\[ = \frac{\theta . \sin \theta}{\sqrt{1 - \sin^2 \theta}} + \frac{1}{2}\text{ ln} \left| 1 - \sin^2 \theta \right| - \frac{\theta^2}{2} + C\]
\[ = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} + \frac{1}{2}\text{ ln }\left( 1 - x^2 \right) - \frac{1}{2} \left( \sin^{- 1} x \right)^2 + C \left[ \because \theta = \sin^{- 1} x \right]\]
APPEARS IN
संबंधित प्रश्न
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]