हिंदी

∫ X − 3 X 2 + 2 X − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `

योग

उत्तर

\[\int\left( \frac{x - 3}{x^2 + 2x - 4} \right)dx\]
\[x - 3 = A\frac{d}{dx}\left( x^2 + 2x - 4 \right) + B\]
\[x - 3 = A \left( 2x + 2 \right) + B\]
\[x - 3 = \left( 2 A \right) x + 2A + B\]

Comparing Coefficients of like powers of x

\[2A = 1\]
\[A = \frac{1}{2}\]
\[2A + B = - 3\]
\[2 \times \frac{1}{2} + B = - 3\]
\[B = - 4\]

\[Now, \int\left( \frac{x - 3}{x^2 + 2x - 4} \right)dx\]
\[ = \int\left( \frac{\frac{1}{2}\left( 2x + 2 \right) - 4}{x^2 + 2x - 4} \right)dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right) dx}{\left( x^2 + 2x - 4 \right)} - 4\int\frac{dx}{x^2 + 2x + 1 - 1 - 4}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right) dx}{\left( x^2 + 2x - 4 \right)} - 4\int\frac{dx}{\left( x + 1 \right)^2 - \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + 2x - 4 \right| - \frac{4}{2\sqrt{5}} \text{ log }\left| \frac{x + 1 - \sqrt{5}}{x + 1 + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + 2x - 4 \right| - \frac{2}{\sqrt{5}} \text{ log } \left| \frac{x + 1 - \sqrt{5}}{x + 1 + \sqrt{5}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 3 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×