Advertisements
Advertisements
प्रश्न
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
योग
उत्तर
` ∫ sin x \sqrt{ 1 + \text{cos 2 x dx} `
` = ∫ sin x . \sqrt{ 2cos ^2 x} dx ` ` [∴ 1 + cos 2x = 2 cos^2 X]`
\[ = \sqrt{2}\int\text{sin x }\text{cos x dx}\]
\[ = \frac{\sqrt{2}}{2}\int\text{2 }\text{sin x } \text{cos x dx}\]
\[ = \frac{1}{\sqrt{2}}\int\text{sin 2x dx}\]
\[ = \frac{1}{\sqrt{2}}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = \frac{- 1}{2\sqrt{2}}\cos 2x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int \cot^4 x\ dx\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]