Advertisements
Advertisements
प्रश्न
\[\int x \sec^2 2x\ dx\]
योग
उत्तर
\[\int x_I \cdot \sec^2 2_{II}x\ dx \]
\[ = x\int \sec^2 2x\ dx - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 2x\ dx \right\}dx\]
\[ = \frac{x \tan 2x}{2} - \int1 \cdot \frac{\tan 2x}{2} dx\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{2} \frac{\text{ ln } \left| \sec 2x \right|}{2} + C\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{4} \text{ ln} \left| \sec 2x \right| + C\]
\[ = x\int \sec^2 2x\ dx - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 2x\ dx \right\}dx\]
\[ = \frac{x \tan 2x}{2} - \int1 \cdot \frac{\tan 2x}{2} dx\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{2} \frac{\text{ ln } \left| \sec 2x \right|}{2} + C\]
\[ = \frac{x \tan 2x}{2} - \frac{1}{4} \text{ ln} \left| \sec 2x \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \cos^5 x\ dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`